BZOI 2017-07-20集训 T2(线段树/树状数组)

此题线段树模板题,但是据说这题本来要卡线段树但是失败了,正解是树状数组,树状数组快一半,常数小,树状数组区间修改区间查询看我的算法笔记中的解释。

线段树:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define FN2 "MoSQL"
using namespace std;
const int MAXN = 1e6 + 5;
int n, Q;
LL a[MAXN * 4], sumv[MAXN * 4], addv[MAXN * 4];
#define lc (o<<1)
#define rc (o<<1|1)
#define M ((l+r)>>1)
void pushup(int o) {
    sumv[o] = sumv[lc] + sumv[rc];
}
void build(int o, int l, int r) {
    if (l == r) sumv[o] = a[l]; else build(lc, l, M), build(rc, M + 1, r), pushup(o);
}
void pushdown(int o, int len) {
    if (addv[o]) {
        sumv[lc] += addv[o] * (len - len / 2), sumv[rc] += addv[o] * (len / 2);
        addv[lc] += addv[o], addv[rc] += addv[o];
        addv[o] = 0;
    }
}
void update(int o, int l, int r, int x, int y, LL w) {
    if (x <= l && r <= y) {
        sumv[o] += w * (r - l + 1);
        addv[o] += w;
        return ;
    }
    pushdown(o, r - l + 1);
    if (x <= M) update(lc, l, M, x, y, w);
    if (M < y) update(rc, M + 1, r, x, y, w);
    pushup(o);
}
LL query(int o, int l, int r, int x, int y) {
    LL ret = 0;
    if (x <= l &&r <= y) {
        return sumv[o];
    }
    pushdown(o, r - l + 1);
    if (x <= M) ret += query(lc, l, M, x, y);
    if (M < y) ret += query(rc, M + 1, r, x, y);
    return ret;
}
void clean() {
    for (int i=0;i<=n*4;i++) sumv[i] = addv[i] = 0;
}
void solve() {
    clean();
    for (int i=1;i<=n;i++) scanf("%I64d", &a[i]);
    build(1, 1, n);
    scanf("%d", &Q);
    char ch[20];
    for (int i=1;i<=Q;i++) {
        scanf("%s", ch);
        if (ch[0] == 'Q') {
            int l, r;
            scanf("%d%d", &l, &r);
            if (l > r) swap(l, r);
            printf("%I64d\n", query(1, 1, n, l, r));
        } else if (ch[0] == 'A') {
            int l, r;
            LL x;
            if (l > r) swap(l, r);
            scanf("%d%d%I64d", &l, &r, &x);
            update(1, 1, n, l, r, x);
        }
    }
}
int main() {
    freopen(FN2".in", "r", stdin); freopen(FN2".out", "w", stdout);
    scanf("%d", &n), solve();
    fclose(stdin); fclose(stdout);
    return 0;
}

树状数组:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define FN2 "MoSQL"
using namespace std;
const int MAXN = 1e6 + 5;
int n, Q;
LL a[MAXN], c1[MAXN], c2[MAXN];
int lowbit(int x) {return x&(-x);}
void add(int x, LL w) {
    for (int i=x;i<=n;i+=lowbit(i)) {
        c1[i] += w, c2[i] += (LL)x * (LL)w;
    }
}
LL query(int x) {
    LL ret = 0;
    for (int i=x;i>0;i-=lowbit(i)) {
        ret += (x + 1) * c1[i] - c2[i];
    }
    return ret;
}
void clean() {
    ms(c1, 0), ms(c2, 0);
}
void solve() {
    clean();
    for (int i=1;i<=n;i++) scanf("%I64d", &a[i]), add(i, a[i]), add(i + 1, -a[i]);
    scanf("%d", &Q);
    char ch[20];
    for (int i=1;i<=Q;i++) {
        scanf("%s", ch);
        if (ch[0] == 'Q') {
            int l, r;
            scanf("%d%d", &l, &r);
            printf("%I64d\n", query(r) - query(l - 1));
        } else if (ch[0] == 'A') {
            int l, r;
            LL x;
            scanf("%d%d%I64d", &l, &r, &x);
            add(l, x), add(r + 1, -x);
        }
    }
}
int main() {
    freopen(FN2".in", "r", stdin); freopen(FN2".out", "w", stdout);
    scanf("%d", &n), solve();    
    fclose(stdin); fclose(stdout);
    return 0;
}

mogician 的 SQL
Markdown

------ 本文结束 ------